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a b s t r a c t

In precision agriculture more and more robots are being used to perform tasks that may include some

farming activities, such as pruning, inspection or spraying, assigned to the robot as a result of a previous

analysis activity or autonomously identified by the machine itself. In this sensitive scenario, reporting

difficult situations to a decision maker, e.g., a human operator or some sophisticated software tools that

cannot be integrated with the robot, could be useful to perform the correct action that the machine has

to execute. Unfortunately, this key aspect is still neglected in current literature that focuses, instead, on

fully automated operations by robots. Moreover, it is necessary to consider that in rural areas it often

happens that successful data communication can only be achieved in certain locations in the field. In this

context, we aim to address all the previous shortcomings by formulating a more comprehensive opti-

mization problem, which also models the necessity to report to a central location and get instructions on

the task to be done before proceeding to perform each action. After presenting two alternative analytical

formulations of the problem, i.e. an integer linear programming model (ILP) and a mixed integer linear

programming model, we propose a branch and bound algorithm that is guaranteed to find the global

minimum cost solution in terms of navigation time. Simulation results show that our proposed algorithm

performs about 20 to 30 times faster with respect to commercial linear programming solvers using any of

the two analytical models proposed. Moreover, we also propose further improvements to reduce compu-

tational time while maintaining solution optimality. Finally, some insight into the development of future

heuristics is given by analyzing the speed of convergence towards the optimal solution.

© 2019 Elsevier Ltd. All rights reserved.
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. Introduction

The amount of robots employed in agriculture applications

s constantly increasing. Two types of robots are typically used:

nmanned ground vehicles (UGV) and unmanned aerial vehicles

UAV) (Zecha et al., 2013). Examples are rovers that navigate the

ultivation to perform specific agriculture tasks, e.g., inspection

r physical operations such as collecting samples, pruning, spray-

ng (Bonadies et al., 2016). UAVs, instead, are mainly used for im-

gery tasks, i.e., to take pictures for later processing in order to

nderstand the status and requirements of different parts of the

ultivation (Candiago et al., 2015; Lukas et al., 2016). Collaboration

etween UAVs and UGVs is also being actively explored (Vasudevan

t al., 2016; Vu et al., 2018).

Despite some operations can be done autonomously by the

obots, sometimes communication with a central location is
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eeded, so that a human operator or an algorithm, more sophisti-

ated compared to the one that can run on the robot, can be used

n the loop to take decisions and act accordingly in a specific ter-

ain position. In fact, a recent survey about the usage of agricul-

ural robots (Bechar and Vigneault, 2016) pointed out the lack of

odels considering such aspect in the current literature, while at

he same time highlighting its necessity to correctly model actual

roblems.

Note that this work relies on an agricultural scenario to present

he models just because it seems to be one of the most challenging

eal applications, but it can also cover other real situations, such

s the one described in the following. In case of industrial oper-

tions being performed by robots with human supervision, there

ould be A (A typically large) jobs located in different places to

e performed by a robot and a supervisor operator may just have

rough knowledge of what is the exact job to be done at each

ocation. There are also B locations where the robots can collect

hat is needed to perform a job. The proposed models can be used

o schedule the A jobs minimizing the time required to complete

hem. At any job location the robot first performs an inspection,
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then moves to a point of type B, if necessary, by sending in the

meanwhile a report to the supervisor operator that decides what

to do and what is needed to perform the job and informs the

robots that then act accordingly. Another example is repair com-

panies: they may rely on the proposed models to schedule their

logistic operations. The customer locations would represent points

of interests and the company warehouses are the points to be vis-

ited to perform repairs at the point of interests. More precisely,

when an operator leaves the main warehouse in the morning, at

each customer location he/she either fixes the problem (if the de-

scription was exhaustive) or collects information about the prob-

lem and what is needed, then visits a company warehouse in or-

der to pick up all he needs and go back later to the customer loca-

tion to fix the problem. More in general, our models can be used

for efficiently planning operations requiring data acquisition, data

elaboration or transmission, and finally an action.

In this work we focus on the specific agriculture scenario con-

sidering and modelling the constraint imposed by communicating

with a decision maker, e.g., a human operator, before performing

physical actions. Considering the optimization problem, we assume

to have a rough preliminary knowledge about the terrain and how

a UGV can move in the area. In other words, obstacle positions

and possible navigation paths are known. This can be obtained by

previous knowledge or by means of a survey, e.g., made using a

UAV or other similar technologies. During the survey, points of in-

terests (POIs) are also identified, i.e., areas to be visited by the

UGV in order to gather information, decide what to do and act ac-

cordingly. Since the decision of the action to perform in each POI

might be difficult to take only relying on the on-board processing

capabilities or simply might require human judgment not available

through algorithms, we assume that after the UGV has gathered in-

formation by moving to the POI and taking, e.g., a picture, it must

communicate with a central location to get an answer about the

farming action to perform. The UGV must then perform the action

returning to the POI, if necessary.

However, it is well know that communications, including wire-

less, in rural areas might be difficult (Nandi et al., 2016), mainly

due to two reasons. The first reason is, sometimes, the pres-

ence of massive physical constraints, such as hills, rocks, subsi-

dence (MacCartney et al., 2016). The second reason is the typi-

cally scarce coverage of 3G/4G cellular technology, since there is

small incentive for network operators to provide good quality cov-

erage of such areas due to, e.g., the low people density. As a conse-

quence, depending on the physical position, either no communica-

tion is possible or only wireless communications are available but

with locally-deployed infrastructure such as Wi-Fi access points or

similar systems, potentially tuned to communicate over longer dis-

tance compared to the usual home devices. In our scenario, we as-

sume that we roughly know that in certain places on the terrain

communication is possible, whereas in others this is not possible

at all. Such information could come as a result of a previous sur-

vey, or considering the relative position of the devices, the terrain

topography and similar features.

Our goal is to provide an efficient algorithm to solve the nav-

igation problem of the UGV on the terrain while minimizing the

time needed to perform all the tasks in the previously determined

POIs, considering that before performing a task in a POI it has to

i) visit the POI and collect some data about its state, ii) visit a lo-

cation where those data can be transmitted and instructions on

the task to be done are received, iii) go to the POI and perform

the action. Obviously the UGV does not have to perform the three

steps sequentially for each POI, but it can visit multiple POIs be-

fore moving to a place where it can communicate, and then it can

go back to each one of them, in any order, to execute the received

instructions. Minimizing the time taken by the UGV is economi-

cally advantageous for many reasons. For instance, if the UGV is
ented, it can operate in more places therefore serving more than

ne customer, thus the company renting it can maximize its earn-

ngs. Conversely, if the UGV needs to be bought, a lower number

f them is needed to perform all the activities in the timeframe

equired by the specific agriculture scenario so that the UGV could

otentially be employed for other activities.

This paper significantly extends our preliminary

ork (Fotio Tiotsop et al., 2019, to be published). In particu-

ar, we present an improved version of our proposed branch and

ound algorithm which relies on the computation of a lower

ound to reduce the execution time. Moreover, an additional

ixed ILP model employing dummy vertices is presented for

omparison purposes. Finally, this paper includes an extensive set

f performance results on several different graph instances, i.e.

fty instances for each level of complexity, both using the two ILP

odels and the proposed algorithm.

The paper is organized as follows. Section 2 reviews related

ork in the field, whereas Section 3 explains how to represent the

raph which is the basic input data for our algorithm. Then, the

ptimization problem is analytically formulated in Section 4 as two

LP problems, using two different approaches, to study its charac-

eristics. In Section 5 a specific algorithm for the problem is de-

igned and implemented in the form of a branch and bound algo-

ithm, and some efficient pruning and lower bounding strategies

re proposed. Section 6 shows some practical experimental results

n realistic graphs, followed by conclusions in Section 7.

. Related work

Sensing technologies are more and more used in agricultural

pplications to perform crop monitoring (Castellini et al., 2017;

ong et al., 2017). For instance, imaging sensors in the visible spec-

rum (Chang et al., 2017) or at other wavelengths (Khanal et al.,

017) are often used. Image data can then be elaborated to de-

ect cultivation type, e.g., vineyard Comba et al. (2015), or to detect

ingle plants and potential anomalies (Primicerio et al., 2017a). A

ore comprehensive overview of such technologies can be found

n Matese and Di Gennaro (2015).

Potential issues can be identified and transformed into a set of

OIs so that, on the basis of the cultivation map, a UGV can move

n such positions in order to perform a more detailed analysis, e.g.,

aking closer pictures or perform local measures with sensors, to

ater perform some specific physical action (Das et al., 2015; Pei

t al., 2014). For the purpose of solving the UGV movement prob-

em, the cultivation field can be abstracted in the form of a graph

ith nodes (i.e., the POIs) connected by edges whose weight rep-

esent the cost, in terms of time, needed to move from one point

o the other.

Graph visiting problems have been well investigated from

he theoretical point of view. The travelling salesman prob-

em (TSP) or more in general the vehicle routing prob-

em (VRP) and some variants have been intensively stud-

ed in literature Eksioglu et al. (2009); Fadda et al. (2018);

uang et al. (2018); Laporte (1992); Marinakis et al. (2007);

alavati-Khoshghalb et al. (2017). In short, they consider a set of

ehicles that can transport goods and a graph whose nodes rep-

esent a set of customers, each one characterized by a given de-

and. Each edge represents the cost that should be sustained to

ove from a customer to another. The VRP aims at determining

hich customers should be served by any vehicle and the sched-

le of the operations of any vehicle in order to minimize the total

ost satisfying the capacity constraint of each vehicle and the de-

and of each customer. In case of a single vehicle, the problem is

educed to the TSP.

Reducing field work time in agriculture by optimally schedul-

ng agricultural tasks is often assimilated in the literature to graph
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isiting problem. In Bochtis and Sørensen (2010); Seyyedhasani

nd Dvorak (2017, 2018) the authors explain how the VRP

an be used to gain efficiency in field logistics. In particular

n Seyyedhasani and Dvorak (2017) the numerical experiments

how that it is possible to save up to 32% of the time if the op-

rations are guided by the solution of the proposed VRP instead

f an intuitive approach. The TSP is used in Zhou et al. (2014) to

chedule the farming activities in fields characterized by the pres-

nce of a large number of obstacles.

While the goal of these works is to minimize the time needed

o complete the assigned farming tasks, similarly to our navigation

roblem, nevertheless they are substantially different in the fact

hat they do not consider the communication aspect and thus the

nteraction with an external decision maker, e.g., a human operator

r any other external tool, whose presence coordinates the opera-

ions and addresses critical situations.

Some VRP variants are somehow more similar to our case, for

nstance the so called vehicle routing problem with intermediate

tops (VRP-IS) Schiffer et al. (2019). An intermediate stop (IS) is

stop that occurs at a node whose visit is necessary to keep

he vehicle operational or to perform any other action necessary

o pursuit the main task assigned to the vehicle. ISs have been

onsidered for replenishment (Crevier et al., 2007), unloading of

aste (Kim et al., 2006), refueling (Bousonville et al., 2011; Schif-

er and Walther, 2017), rest (Vansteenwegen et al., 2012) and syn-

hronization requirements (Drexl, 2012). Similarly to the VRP-IS,

ur problem considers, besides the POIs where physical actions are

equired, the points covered by wireless network where the UGV

ight stop to transfer the data collected until that point and get

nstructions about the correct actions to perform later at the POIs.

n our problem the UGV is hence constrained to visit each POIs

gain once the data acquired during the first visit have been trans-

itted. This clearly introduces further constraints compared to the

ited works.

The more practical problem of computing the exact physical

ath corresponding to each edge in our graph is addressed in

he robotics research field by works focusing on robot naviga-

ion problems. For instance, one of the most common problems

s the so-called path-planning, in which a trajectory must be com-

uted so that a robot can move to a certain target position while

ulfilling certain constraints, i.e., avoiding obstacles and forbid-

en or dangerous conditions (Basaca-Preciado et al., 2014; Fer-

ntinos et al., 2002; Gasparetto et al., 2015). More complex con-

traints can be taken into account, e.g., the slope of the terrain, as

n Contente et al. (2016) that presents the case of a UGV that needs

o visit all the rows in a vineyard.

Once edge weights and node positions are known, our

roblem resembles (but it is not the same) the Steiner TSP

STSP) Zhang et al. (2016). Given a graph, a cost for each edge of

he graph and a subset of nodes that represent customers, the STSP

ims at finding the minimum-cost tour that passes through each

ustomer node. Edges may be traversed more than once, and nodes

isited more than once, if necessary. Such a problem, despite be-

ng somehow similar to ours, presents an important difference. In

hat problem, all clients have to be visited at least once. In ours,

e require to visit at least twice the POI nodes making sure that at

east one of the visits at a given POI occurs after the transmission

f the related information. This further increases the complexity,

ince time variables need to be introduced in order to manage the

hronology of the tasks.

. Graph representation

In our work we assume that a picture has been used to de-

ive a graph that represents the field in which the UGV must

perate. The task of creating a graph from a picture by detect-
ng the different types of areas and how they are connected

nd which is the optimal movement path between different ar-

as is a problem well addressed in literature (see Nex and Re-

ondino (2014); Primicerio et al. (2017a); Sona et al. (2016);

orres-Sánchez et al. (2014)). Therefore, here we assume that such

graph is available. In more details, in our scenario the graph in-

ludes nodes, which correspond to physical locations in the terrain.

uch nodes are connected with edges whose weight represents the

ost of moving from one node to the other. Obstacles and possible

ovement paths are already modeled in such weights.

Concerning nodes, they can be classified into three types.

• Type A: The nodes that we want to visit, in which a physical

operation has to be performed by the robot.
• Type B: The nodes in which we are sure that wireless commu-

nication can be established in order to both transmit the infor-

mation collected at previous ‘A’ nodes and receive instructions

about what to do in those nodes.
• Type AB: The nodes with the characteristics of both ‘A’ and ‘B’.

When visited, the physical operation can be immediately per-

formed after data communication has taken place, since it is

possible to immediately communicate and receive instructions.

Detecting ‘A’ nodes heavily depends on the specific task to do

e.g., detecting potential weeds, or places where plant pruning op-

rations might be necessary). The same applies for ‘B’ nodes, in

hich wireless communication models, combined with the ter-

ain geography can be used to determine the possible coverage, or

aybe the information is simply available from a previous survey.

. Mathematical formulations

In this section two alternative models of the problem are pre-

ented. Both models need to address the problem of modeling the

ovements of the UGV that needs to traverse nodes and edges an

nknown number of times. The first formulation addresses the is-

ue by means of an ordered set of displacements (i.e., a movement

rom a node to another) that the UGV must follow to complete the

equired tasks. In this formulation the UGV can pass more than one

ime on the same node, whereas in the second model this condi-

ion is considered by means of dummy vertices (i.e., replica nodes

o consider multiple visits).

.1. Displacement-based formulation (Model I)

Let us define the following elements:

• A: the set of nodes to visit (Type ‘A’ or ‘AB’)
• B: the set of nodes where wireless communication can be es-

tablished (Type ‘B’ or ‘AB’)
• V = A ∪ B set of all nodes
• K: the set of displacements of the UGV
• E: the set of edges connecting the different nodes
• A, B, E and K respectively the cardinality of A,B, E and K
• s the depot node or the central location
• tij: the time required to cover the edge (i, j) ∈ E
• xk

i j
: a boolean variable equal to 1 if during its k-th displacement

the UGV moves along the edge (i, j) ∈ E
• yk

i
: a boolean variable equal to 1 if during the k-th displacement

the UGV transfers the data collected from the node i ∈ A

The problem is formulated as follows

in
x,y

∑
k∈K

∑
(i, j)∈E

xk
i jti j (1)

t: ∑
j∈A∪B:(s, j)∈E}

x1
s j =

∑
{i∈A∪B:(i,s)∈E}

xK
is = 1, (2)
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∑
(i, j)∈E

xk
i j = 1 ∀k ∈ K, (3)

∑
k∈K

yk
i = 1 ∀i ∈ A, (4)

∑
k∈K

∑
{i∈A∪B:(i, j)∈E}

xk
i j ≥

{
2 ∀ j ∈ A \ B,

1 ∀ j ∈ A ∩ B,
(5)

xk−1
i j

≤
∑

{i∈A∪B:( j,i)∈E}
xk

ji ∀(i, j) ∈ E ∀k ∈ (K \ {1}), (6)

yk
i ≤

∑
{ j∈B:(i, j)∈E}

xk
i j ∀i ∈ A ∀k ∈ K, (7)

yk
j ≤

∑
1≤t≤k

∑
{i∈A∪B:(i, j)∈E}

xt
i j ∀ j ∈ A ∀k ∈ K, (8)

yk
j ≤

{ ∑
k+1≤t≤K

∑
{i∈A∪B:(i, j)∈E}

xt
i j ∀ j ∈ A \ B ∀k ∈ K \ {K},

0 ∀ j ∈ A \ B k = K

(9)

xk
i j ∈ {0, 1} ∀(i, j) ∈ E ∀k ∈ K, (10)

yk
i ∈ {0, 1} ∀i ∈ A ∀k ∈ K, (11)

Eq. (1) requires the minimization of the total time required

to perform all the operations, Eq. (2) imposes that the path of

the UGV should start and end at the depot. The constraints in

Eq. (3) ensure that each displacement of the UGV corresponds to

one edge in the solution and Eq. (4) requires that the data col-

lected from any node i ∈ A are transmitted once and only once.

The constraints in Eq. (5) ensure that the UGV visits, i) at least

twice, the nodes of interest in the set A \ B where it is not possi-

ble to communicate and ii) at least once, the other nodes of inter-

est in the set A ∩ B. Eq. (6) are flow conservation constraints. The

fact that the UGV might transfer from a node only if such node

belongs to the set B is given by Eq. (7). Eq. (8) requires that the

UGV transfers the information related to a given node in the set

A only if such node has already been visited, Eq. (9) requires that,

once the information corresponding to the visit of a node in the set

A \ B where communication is not possible has been transmitted,

the UGV must visit the node again once more. Finally Eqs. (10) and

(11) ensures that the variables of the optimization problem have a

binary value.

One of the main reason of the complexity of the problem in

Eqs. (1)–(11) is that it includes the parameter K whose value is

unknown a priori. K actually represents the number of displace-

ments the UGV needs to perform before completing the required

tasks. This issue could be solved by assigning a very large value

to K and allowing the UGV not to move to a new node to match

the K value. Unfortunately, the number of binary variables in the

problem increases with K, therefore the complexity of the problem

easily increases. On the other hand, if the value of K is underes-

timated the problem might become infeasible or the model may

lead to a feasible solution that is not the optimal one. Another

alternative to tackle such difficulty could be the column genera-

tion approach (CGA) whose implementation requires to formulate

a restrictive master problem (RMP) associated with the problem

in Eqs. (1)–(11) and progressively add new columns and thus new

variables to the RMP until the minimum number of variables nec-

essary to get the optimal solution is reached. More details about

the CGA can be found in Wilhelm (2001); Zhao et al. (2018). The

main drawback of this approach is the difficulty of getting a RMP

associated with a given integer linear programming problem that

guarantees both the effectiveness and the efficiency of the CGA.
The minimum value for K needed to obtain the optimal solution

s strongly related to the topology of the underlying graph of the

roblem, nevertheless the following proposition holds:

roposition 4.1. Let L denote the number of edges that constitutes

he shortest path between a pair of nodes in V having the largest

umber of edges and AB the cardinality of A ∩ B. If K ≥ L(3A − 2AB +
) then the solution provided by the model in Eqs. (1)–(11) is the op-

imal one.

roof. First, consider the case in which the graph is complete and

hus L = 1. Denoting by Ni the total number of times the UGV visits

nd leaves a node i ∈ V before any solution is found, it follows that

i∈V
Ni = 2K. (12)

ince each node a ∈ A \ B has to be visited twice and that since

he graph is complete, extra visits cannot occur in a, therefore

a = 4. (13)

Furthermore, a node b ∈ B is visited to transmit the data col-

ected at one or more nodes a ∈ A, hence

b∈B
Nb ≤ 2A. (14)

Using (13) and (14) and considering that the UGV needs to leave

he depot s and return back there at the end of the tour (thus 2

ore displacements are to be added to Ns):

K =
∑
i∈V

Ni =
∑

a∈A\B
Na +

∑
b∈B

Nb ≤ 4(A − AB) + 2A + 2

= 6A − 4AB + 2

Hence if K ≥ 3A − 2AB + 1 any feasible solution will be ex-

lored. In the more general case in which the graph is connected

ut not complete, extra visits to a given node than those needed

or data collection, transmission or to perform some action are ex-

ected to occur. For instance the UGV might move from a B node

o another B node to reach an A node. By definition of L, any oper-

tion requiring a single displacement, when the graph is complete,

an be performed after at most L displacements of the UGV in case

he graph is connected but not complete. Hence, all the feasible so-

utions will be examined if

≥ L(3A − 2AB + 1). (15)

�

.2. Dummy-Vertices-based formulation (Model II)

In this section, we explore an alternative formulation of the

roblem. Following the approach of Schiffer and Walther (2017) we

se the so-called dummy vertices to take into account that ver-

ices can be visited more than once. Let us define the following

lements:

• d the number of dummy replications of each vertex
• Vd set of all vertices including the dummy vertices
• Ed set of all edges including the dummy edges
• Di = {i1, i2, . . . , id} set of the d dummy vertices associated with

the vertex i ∈ V, e.g., s1 and sd are respectively the first and the

last dummy vertex associated to the depot s
• xij=1 if the arc (i, j) ∈ Ed is in the solution and 0 otherwise
• τ i the time at which the vertex i ∈ Vd is visited
• yij =0 if τ j /∈ [τi1

τid
] ∀i ∈ A \ B, j ∈ Bd

• T = d
∑

(i, j)∈E ti j
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Fig. 1. Network of the example 5.1.
The problem can then be alternatively formulated as follows:

in
x,y

∑
(i, j)∈Ed

xi jti j (16)

t: ∑
∈Vd ,(i, j)∈Ed

xi j ≤ 1 ∀ j ∈ Vd (17)

∑
j∈Vd ,(i, j)∈Ed

xi j −
∑

j∈Vd ,(i, j)∈E,

x ji = 0 ∀i ∈ Vd, i 	= s1, i 	= sd (18)

∑
∈Vd ,(i, j)∈Ed

xi j ≥ 1 ∀ j ∈ A ∩ B (19)

∑
j∈Vd ,( j,i1)∈Ed

x ji1
≥ 1 ∀i ∈ A \ B (20)

∑
j∈Vd ,( j,id )∈Ed

x jid
≥ 1 ∀i ∈ A \ B (21)

ik
+ T

(
1 −

∑
j∈Vd ,( j,i)∈Ed

x jik

)
≥ τi1

∀i ∈ A \ B, k = 1, 2, . . . , d (22)

ik
− T

(
1 −

∑
j∈Vd ,( j,i)∈Ed

x jik

)
≤ τid

∀i ∈ A \ B, k = 1, 2, . . . , d (23)

∑
j∈Bd

yi j ≥ 1 ∀i ∈ A \ B (24)

∑
∈Vd ,(i, j)∈Ed

xi j ≥ yk j ∀ j ∈ Bd, k ∈ A \ B (25)

i1
− T (1 − yi j) ≤ τ j ≤ τid

+ T (1 − yi j) i ∈ A \ B, j ∈ Bd (26)

i + ti jxi j − T (1 − xi j) ≤ τ j (i, j) ∈ Ed (27)

∑
j∈Vd ,( j,s1)∈Ed

xs1 j = 1 (28)

∑
j∈Vd ,( j,sd )∈Ed

x jsd
= 1 (29)

s1
− T

(
1 − ∑

i∈Vd ,(i, j)∈Ed

xi j

)
≤ τ j ≤ τsd

+ T

(
1 − ∑

i∈Vd ,(i, j)∈Ed

xi j

)
j ∈ Vd, j 	= s1, j 	= sd

(30)

i j ∈ {0, 1} (i, j) ∈ Ed (31)

i j ∈ {0, 1} i ∈ A \ B, j ∈ Bd (32)

i ∈ [0, +∞) i ∈ Vd (33)

The model can be interpreted as follows. The minimization of

he time required to complete the tour is expressed in (16). The

onstraints (17) state that any dummy node should be visited at

ost once. Constraints (18) establish flow conservation by requir-

ng that the number of incoming arcs of each node (except the ver-

ices s1 and sd) is equal to the outgoing ones. Constraints (19) en-

orce that each node of type AB is visited at least once. The con-

traints (20)–(23) handle the two visits needed in each node of

ype A where data transmission is not allowed. In fact ∀i ∈ A \ B
t is required that the associated dummy nodes i1 and id should

e visited. Furthermore, the first and the last visit in i should

ccur using respectively i1 and id. Constraints (24) and (25) en-

ure that the data collected in each node i ∈ A \ B are transmitted

rom some node j ∈ Bd before the last visit to node i occurs, while

26) models the relation between the variables yij, τ j, τi1
, τid

. Time

onstraints are expressed in (27). The constraints (28) and (29) en-

orce the connectivity between the starting location and the other

odes. Constraints (30) require that the tour starts and ends at the

epot s. Finally, (31)–(33) determine the domain of the decision

ariables.

. Proposed solution

To avoid an unreasonable increase in the number of decision

ariables, we propose to employ a graph visiting algorithm cou-

led with a branch and bound approach so that all possible so-

utions are explored while complexity is minimized. For the sake

f convenience we remind the goal of the problem. Starting from

he depot s, the UGV must visit every node a ∈ A, acquire some

ata, find a location b ∈ B where the data can be sent, receive in-

tructions, go back to a, perform the required task and, at the end,

eturn back to s spending the lowest possible amount of time.

Let us denote by a1, a2, ..., aA the A nodes to be visited. While

he UGV is moving through the graph, the state of the UGV itself

s completely defined by

= (n1, n2, . . . , nA, u, c)

here u is the node the UGV is visiting, c is the total cost of the

dges traversed so far and

i =

⎧⎪⎨
⎪⎩

0 if the node ai has not yet been visited
1 if the node ai has been visited
2 if the data associated with node ai has been transmit
3 if the task required for the node ai has been perform

efinition 5.1. The state S = (n1, n2, . . . , nA, u, c) is said to be a

easible solution of the problem if u = s and

i = 3 ∀i ∈ {1, 2, . . . , A}
The state S = (n1, n2, . . . , nA, u, c) is branched taking into con-

ideration all possible displacements of the UGV from the node u

o any other node connected to u by one edge and this leads to

he construction of the state tree as illustrated in Example 5.1.

xample 5.1. Consider the network in Fig. 1 in which the node

1 ∈ A \ B, a2b2 ∈ A ∩ B, s ∈ B and b1 ∈ B. The network shows two

odes of interest a1 and a2b2 and hence the generic state is given

y (n1, n2, u, c) in which n1 and n2 are associated with a1 and a2b2

see Eq. ()) In Fig. 2 we represent part of the tree of the states that

re generated by the algorithm. The root of the tree is the state

0, 0, s, 0) corresponding to the initial location. From node s, if the
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(0, 0, s, 0)

(1, 0, a1, 2)

(2, 0
, s, 4

)
(2, 0

, b1, 4
)

(0, 0, b1, 5)

(1, 0
, a1, 9

)

(0, 3
, a2b2, 9

)

(0, 3, a2b2, 10)

(0, 3
, s, 2

0)
(0, 3

, b1, 1
4)

Fig. 2. State tree of the example 5.1.
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UGV moves to the node a1, n1 takes value 1 and the new state will

be (1, 0, a1, 2); if the UGV moves to node b1, the new state will be

(0, 0, b1, 5). Finally, if the UGV moves to node a2b2, since com-

munication is possible there, the UGV will send the corresponding

information and then it will perform the required task. Hence n3

will assume value 3 and the state will be (0, 3, a2b2, 10). Such

reasoning is applied recursively to all the newly generated states.

Fig. 2 shows also the next expansion for the next level of the visit.

The algorithm implements two main operations: branch and

bound. The first one (branch) consists in expanding the state

tree by generating new states from its leaves, as illustrated in

Example 5.1, and the second one (bound) consists in reducing the

state tree by means of a pruning procedure that terminates the

visit on the leaves of the state tree that can not lead to the opti-

mal solution. The decision on what leaf can or can not lead to an

optimal solution, i.e. pruning, is based on the following two rules:

1. If the lower bound associated with any state among those to

be expanded (the leaves) is greater than the cost of any al-

ready computed feasible solution, such state is closed, i.e., it is

no more considered for branching.

2. If any state among those to be branched differs from a state S

already reached just for its cost, such state is closed if its cost

is greater than the one of S.

In order to derive a lower bound associated with a state S =
(n1, n2, . . . , nA, u, c), first let us consider the set

VS = {a ∈ A | na 	= 3}.
At the state S, each node a ∈ VS \ B such that na = 0 is still to

be visited at least twice and those with na = 1 or na = 2 should

still be visited at least once. Thus, in (34), each node a ∈ VS \ B has

still to be visited at least 2 − min(na, 2) times. Furthermore, each

node b ∈ VS ∩ B still has to be visited at least once. The informa-

tion acquired in each node a ∈ VS \ B has then to be transmitted

by visiting some of the nodes b ∈ B and, finally, the UGV has to

go back to the depot s. Since we are searching for a lower bound

of the time needed to perform the aforementioned operations, we

relax the flow conservation constraints, hence we assume that: i)

the UGV visits and leaves each node j ∈ VS using the cheapest edge

connected to it (mini∈V ti j); ii) the transmissions occurs only once

at some node b ∈ VS ∩ B if there is any, otherwise it occurs at the

node b ∈ B that is reachable from any node that is still to be vis-

ited assuming to spend the smallest possible time (mini∈VS, j∈B ti j);

iii) the UGV will go back to the depot using the lowest amount of

time needed to reach it from a node i ∈ VS (mini∈VS tis). Such re-

laxations clearly lead to a total time that is smaller than or equal

to the time that is actually needed and hence any solution derived

from the state S is lower bounded by

LBS = c +
( ∑

a∈VS\B
(2 − min(na, 1)) min

i∈V
tia

)
+

( ∑
b∈VS∩B

min
i∈V

tib

)
+

(1 − min(1, |VS ∩ B|)) ∗ min
i∈VS, j∈B

ti j + min
i∈VS

tis.

(34)
It is worth noting that the lower bound proposed in (34) is not

articularly complex nor computationally expensive. Therefore it

an be considered a reasonably simple example of how the pro-

osed algorithm can be improved. Nevertheless, the use of such

ower bound can systematically reduce the time needed to find an

ptimal solution, as shown in Section 6.

Another example about how the proposed algorithm can be im-

roved is to make available to the algorithm itself an initial feasible

olution so that the lower bound can be effectively used right from

he start. Such initial feasible solution is computed using a nearest

eighbour algorithm that implements the steps in Algorithm 1.

lgorithm 1 Compute Initial Feasible Solution.

1: run the Bellman Ford algorithm to find the shortest path be-

tween each pair of nodes (i, j), j ∈ V , i ∈ V and its total cost

ci j;

2: T = A, C=0;

3: find the node â ∈ T such that csâ = mina∈A csa and set C=C + csâ

4: T = T \ {â}
5: if T 	= ∅, find the node b ∈ T such that câb = mini∈T câi; set

C=C + câb, let â = b, go back to step 4.

6: find the node i ∈ B such that câi = min j∈B câ j; set C=C + câi

7: C = 2C

8: return C

The underlying idea is the following: starting from the depot s,

he UGV chooses and visits the closest type A node (i.e., the one

eachable in the lowest possible amount of time); then, from that

ode, it selects the next node in the set of those to be visited using

he same criteria; this process is repeated until all nodes of type A

re visited. Then, a type B node is visited to transmit the acquired

ata. Finally, all the nodes are visited again following back the path

sed for data collection, i.e., the cost is doubled. Clearly, this is not

he best solution, but it is a value that can be immediately com-

ared with the computed lower bound also in the initial phases

hen a feasible solution would not be available otherwise.

Also, another important factor to consider in order to make the

lgorithm faster is that while expanding the state tree, leaves can

e considered in several different orders by means of a priority

alue. The simplest strategy to assign such a value is to use a

onotonically decreasing value each time a new leaf is created.

n such a way leaves are considered in creation order. Other more

dvances strategies are possible and they will be presented and in-

estigated in Section 6.

When branching a leaf S, it may happen that all the states gen-

rated from S are canceled when the two pruning rules are ap-

lied. In this case S is closed and no more considered. Note that

losed states also include feasible solutions which clearly do not

eed to be further expanded. The expansion of the state tree and

he pruning procedure are then iteratively applied until all the

eaves of the state tree are closed. In order to formally present the

lgorithm we introduce the following definitions:

• G the graph associated with the problem;
• ST the state tree;
• NU the number of nodes adjacent to node U in the graph G;
• Lg the list of all new states generated when branching the leaf

having highest priority;
• Lp the list of all the states in Lg that are not pruned after the

function Prune() has been called;
• F the list containing the closed states;
• {} the empty list
• Pop(L) a function that takes as input a list of states and returns

the state S with highest priority;
• Branch(S,G) a function that takes as input a state S =

(n , n , . . . , n ,U,C) and the graph, branches the received state
1 2 A
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Fig. 4. Undirected graph that represents the available paths for the UGV on a real

vineyard. Nodes are marked as described in Fig. 3 and represent the type A, B, AB

nodes with the addition of some “transit” nodes marked as empty circles.
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and returns a list of NU states, one for each of the adjacent

nodes to U (see Example 5.1);
• Insert(Lp,ST ) a function that inserts in the state tree the list of

states received as input;
• Prune(ST ,Lg) a function that takes as input the state tree

ST and the list of newly generated states Lg then eventually

prunes some states from ST and Lg according to the aforemen-

tioned pruning rules and returns the list of remaining states

from Lg;
• GetSolution(ST ) a function that extracts from the state tree the

branch that leads to the leaf state that is a feasible solution

with the minimum cost.

The algorithm consists of the steps defined in Algorithm 2.

lgorithm 2 Compute Optimal Path.

ST = {(0, 0, . . . , S, 0)}
F = {}
while ((S = Pop(ST \ F )) 	= {}) do

Lg = Branch(S,G)

Lp = Prune(ST ,Lg)

if (Lp == {}) then

F = F ∪ S

else

Insert(Lp,ST )

end if

end while

Sol = GetSolution(ST )

It is worth noting that the proposed algorithm solves the prob-

em without making any assumption neither on the value of K nor

n the number of dummy vertices associated with each node. The

alue of K can be simply computed at the end by just counting the

umber of displacements performed by the UGV.

. Numerical results and discussion

The numerical experiments conducted in this section aim at

omparing the complexity of solving the problems using both the

nteger and mixed integer linear programming problems repre-

ented respectively by Model I and Model II and our proposed al-

orithm.

Two sample graphs are shown respectively in Fig. 3 and Fig. 4.

different labelling has been adopted for these graphs in order to

ake them more readable when superimposed on a map. Here we

se symbols instead of letters:

• the squares represent nodes of type A
• the diamonds represent nodes of type B
• the stars represent nodes of type AB

While Fig. 3 is a simple example drawn up from scratch, the

raph in Fig. 4 represents a more realistic case that has been ob-

ained by mapping a vineyard of the Langhe area in Piedmont
ig. 3. Sample graph drawn from scratch to mimic a possible field. Here the nodes

epresent: POIs that need to be visited (squares), places where it is possible to com-

unicate (diamonds), or locations that are both (stars).

c

Italy) on an undirected graph with 33 nodes and 39 edges rep-

esenting the paths across the 9 rows of the vineyard.

First, in order to quantify how the effectiveness and efficiency

f Model I is affected by the value of K, we first find the lowest

alue of K that yields the optimal solution in Model I by running

ur branch and bound algorithm. Then, Model I is solved by means

f the integer linear programming solver available in the CPLEX

oftware IBM using different estimations of K including the pre-

ious one. We remind that the number K of displacements of the

GV required to perform all the tasks in the shortest possible time

s dependent on the topology of the considered graph. Choosing K

ccording to (15) guarantees to find the optimal solution. However,

o explore the performance provided by commercial solvers such

s CPLEX, we tested different K values. To better quantify the dif-

erent amount of time required as a function of K, we propose to

valuate the following ratio:

= TK

Topt

here TK and Topt are the times required by CPLEX to solve the

roblem using a certain value of K and the lowest K value that

ields the optimal solution, respectively. Table 1 presents the re-

ults obtained for the graph in Fig. 3. The experiments have been

erformed using IBM ILOG CPLEX Optimization Studio 12.9.0.0 on a

ell PowerEdge T640 with an Intel Xeon 4114 2.2 GHz 64 bit deca-

ore processor and 32 GB of DDR4 2400 MT/s memory. If K is less
Table 1

Time (TK) taken by the CPLEX solver for the graph in Fig. 3 for

different K values in Model I.

K TK (s) ρ Cost

underestimation 10 2.16 0.12 –

of the K value 12 3.88 0.22 –

15 6.17 0.36 100

K optimum value 18 17.33 1.00 94

overestimation 20 40.05 2.31 94

of the K value 22 120.01 6.92 94

> 25 > 1000 > 57.70 94
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Table 2

Time (s) required to solve Model I with a time limit of two hours. For each number of nodes N, ten problem instances (#1 ...

#10) have been randomly generated. When the time limit has been reached we report, in brackets, how much the best solution

found by the model exceeds the optimal one.

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 14.76 493.69 0.77 83.87 0.96 469.49 3.82 (7.30%) (3.11%) (1.02%)

12 2319.38 2.60 1647.31 4.35 1647.31 4.35 3.52 (7.30%) (0.00%) (2.18%)

13 7.61 40.61 4090.54 823.92 346.69 7.34 (7.47%) (4.57%) (0.54%) (0.00%)

14 4670.32 18.86 856.01 (7.59%) (0.61%) (1.56%) (8.47%) (14.97%) (3.39%) (5.26%)

15 1723.71 2057.74 4100.92 429.9 (0.00%) (0.00%) (0.00%) (14.33%) (30.49%) (5.72%)

16 2700.44 3920.32 (3.83%) (3.38%) (0.00%) (7.02%) (2.25%) (11.34%) (8.18%) (6.87%)

17 (34.07%) (3.33%) (14.74%) (38.41%) (6.06%) (35.94%) (37.23%) (27.65%) (39.01%) (53.03%)

18 (34.11%) (8.96%) (9.21%) (25.69%) (11.24%) (28.14%) (36.87%) (55.70%) (29.28%) (18.50%)

Table 3

Time (s) required to solve Model II with a time limit of two hours. For each number of nodes N, the same ten instances of

Table 2 have been used. When the time limit has been reached we report, in brackets, how much the best solution found by

the model exceeds the optimal one.

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 5.73 8.79 4.78 40.25 3.56 12.55 1.47 32.55 30.45 12.77

12 21.04 7.58 8.90 27.78 8.90 27.78 8.40 17.34 43.07 19.14

13 10.93 38.17 44.28 12.31 7.40 7.32 49.01 137.86 5.31 39.72

14 24.87 483.22 14.37 82.69 46.27 114.50 116.87 54.01 32.55 597.56

15 10.63 133.05 138.65 2570.43 234.08 770.36 97.99 217.67 532.98 1327.23

16 27.95 21.52 454.72 436.22 474.42 262.23 1757.05 1229.74 1237.98 (0.00%)

17 207.71 3261.04 626.26 1653.33 2485.79 (11.45%) (18.56%) (7.34%) (22.15%) (8.51%)

18 412.53 1058.85 2258.76 (11.02%) (9.62%) (12.41%) (10.20%) (12.41%) (9.47%) (22.74%)
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than 18, i.e., the lowest value that allows to compute the optimal

solution, the CPLEX solver either finds a cost higher than the opti-

mal one or no solution at all. When K = 18, the CPLEX solver finds

the optimal solution, as expected. A rather small overestimation

of K, e.g., K = 22 instead of K = 18, makes CPLEX about 7 times

slower, and even worse for higher values.

To present a more comprehensive set of results, we now focus

our attention on the topology in Fig. 4 which is far more complex

than the one in Fig. 3. Due to our interest in the agricultural ap-

plication, this topology will be taken as the basis to randomly gen-

erate many different graphs with a variable number of nodes to

visit and thus different complexity. In practice, starting from the

full graph, some of its type A nodes are transformed into “transit”

nodes in which the UGV must not perform any operation (they are

neither of type A or B or AB). Also, in all experiments, the time re-

quired to cover an edge (tij) is directly proportional to the length

of the edge itself.

More precisely, Table 2 and 3 report the time taken by CPLEX

to find the optimal solution using Model I and Model II, for differ-

ent combinations of number of labelled nodes N (hence the sum

of A, B and AB nodes) and position of such nodes. When CPLEX ex-

ceeded the given time limit of two hours, we report a percentage

in brackets (instead of the duration of the computation) that repre-

sents how much the best solution found by the model exceeds the

optimal solution. Also, note that all the values shown in the ta-

bles have been obtained in the best possible conditions, i.e., when

the value of K leading to the optimal solution is known (for Model

I) and when the number of dummy vertices to use is known (for

Model II).

The results in Tables 2 and 3 show that Model II performs bet-

ter than Model I almost all the times. For Model I the execution

time is quite large and can exceed the given time limit also for rel-

atively small graph instances. Both models, when interrupted after

two hours of computation, are able to provide an intermediate best

solution that in some cases is very close to the optimal one, but

that tends to derive more and more for complex graph instances.

Our proposal, instead, is always able to compute a solution in the

given time limit and, when the CPLEX Model II is able to find a

solution, performs 20 to 30 times faster than that.
Regarding our proposed algorithm, four cases have been consid-

red. They are named normal, reduced, advanced, and lower bound

n the following. The normal approach corresponds to the algo-

ithm that runs on the graph as built from the real sample vine-

ard shown in Fig. 4. In such a graph we have reported also some

dditional nodes (marked as circles in the figure) to represent the

ath of the UGV in the vineyard and not only the connections be-

ween the nodes of type A, B, AB. We define such nodes as “tran-

it” nodes because in our algorithm, when such nodes are visited,

he state remains unchanged except for the cost of the path that is

pdated consequently. Clearly, introducing new nodes into a graph

ncreases the total number of nodes which has a direct impact on

he problem’s complexity.

Therefore, in order to minimize the complexity, the graph from

ig. 4 can be reduced by producing an equivalent “reduced” graph

hat has less nodes because all the nodes that are just transit nodes

ave been substituted by direct edges between the adjacent nodes,

o that the same topology is maintained but the number of nodes

s reduced. This is referred to as the reduced approach in the latter,

hich always runs on the “reduced” graph version.

The advanced approach is similar to the reduced approach, i.e.,

t runs on the “reduced” graph, but the priority value described in

ection 5 has been changed. The priority is set to the inverse of the

ost of the state (named costonly in the following) thus the state

ree is always expanded from the leaf state with the lower cost.

ollowing the minimum cost path, and not a path given by the

rdering of the nodes, the pruning function is more efficient and a

arger number of states are discarded by the prune rules because

he algorithm already found an equivalent state with a lower cost.

Finally, the lower bound approach works as the advanced one

ut at each new state it computes a lower bound, as previously

escribed in Section 5, to prune branches faster, hence to reduce

xecution time.

Results are reported in Table 4 as the average on 50 differ-

nt random graphs, for different numbers of nodes N. As it might

e expected, the complexity scales exponentially with the number

f nodes to be visited (i.e., transmitted and re-visited). However,

he cost of finding the optimal solution is heavily reduced if the

dvanced approach is employed. In fact, in the reduced approach,
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Table 4

Complexity of the various approaches, in terms of number of nodes in the state tree (ST size) and execution

time (seconds). Each row reports the average on 50 different random instances, for different numbers of

nodes N.

normal reduced advanced lower bound

N ST size time ST size time ST size time ST size time

11 52,529 3.0 5879 0.5 1121 0.1 852 0.1

12 258,049 15.2 34,623 3.7 4275 0.5 3222 0.4

13 979,446 60.4 158,299 16.8 16,957 1.9 12,842 1.7

14 4,018,175 267.7 715,881 76.2 65,044 8.1 45,478 6.3

15 14,663,488 1014.4 2,789,828 279.7 245,102 30.1 164,629 21.8

16 55,298,726 4135.3 12,438,650 1308.6 988,588 128.0 625,578 86.7

17 - - 57,007,645 5906.8 3,631,947 475.6 2,866,574 407.4

18 - - - - 10,687,414 1388.2 7,998,251 1127.1

Table 5

Time (s) required to solve the problem using the best variant of the proposed algorithm (with lower bounds). For each

number of nodes N, the same ten instances of Table 2 have been used.

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 0.09 0.12 0.09 0.06 0.10 0.07 0.08 0.11 0.11 0.12

12 0.38 0.37 0.45 0.46 0.45 0.46 0.36 0.42 0.48 0.48

13 1.25 1.07 1.65 2.03 1.88 1.54 1.41 1.82 2.36 2.19

14 6.94 7.67 6.73 8.13 5.09 7.41 6.42 9.97 6.43 4.60

15 21.65 16.52 17.45 22.96 19.00 21.05 17.31 22.87 29.73 29.83

16 83.43 66.34 82.52 107.13 114.55 76.65 81.24 94.96 76.73 86.66

17 411.03 507.35 352.81 328.25 391.64 446.76 409.63 303.40 404.87 449.02

18 1057.29 1067.60 905.80 1374.41 1371.11 1432.13 872.12 1200.19 1232.31 1054.64
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very time a new node to be visited is added to the graph, the

ize of the state tree is increased by a factor of 4.40, while in

he advanced approach only by a factor of 3.71. Here the ST size

orresponds to the number of nodes in the state tree as defined

n Section 5. This value equals the number of times the loop in

lgorithm 2 is run, thus it is directly proportional to the average

xecution time, also shown in Table 4. Additional time reductions

re possible if lower bound techniques are used to prune states

aster while exploring them, as done by the lower bound approach,

r if an initial feasible solution is provided right at the start of

he algorithm. While the lower bound consistently allows to re-

uce the computation time with all the instances, the initial solu-

ion does not always provide a significant gain because the priority

sed to visit the nodes is already based on a minimum cost crite-

ion.

To better visualize the data, we also plot the time (on a loga-

ithmic scale) as a function of N in Fig. 5. It is clear that the best

pproach is the lower bound one, which can consistently outper-

orm the others, keeping approximately the same distance from
11 12 13 14 15 16 17 18
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W

he advanced one in terms of relative time reduction, which is

bout 20%. We did not test graphs with more than N = 18 because

n that case also our algorithm would have rapidly exceeded the

wo hours time bound we used for the experiments. In fact, the

xponential trend at which the computation time increases can be

learly deduced from Fig. 5.

Table 5 shows the individual times required by the best variant

lower bound) of our proposed algorithm for each number of nodes

, on the same ten different randomly generated graphs as in

ables 2 and 3. It is clear that our algorithm provides lower execu-

ion time. Moreover, it does not require to estimate any other pa-

ameter to be fed as input as it happens for Model I and Model II.

espite the execution time of the ILP formulations can, occasion-

lly, be somehow close to the one of our algorithm, Table 5 clearly

hows that our algorithm exhibits much more consistency across

ifferent problem instances, which is not the case for the ILP for-

ulations. For example, the CPLEX solver using Model II happens

o exceed the given two hours time bound starting from N = 16

nd at more than half of the times for the more complex graph

nstances. For the less complex instances we computed that, on

verage (over the 50 tested instances), our proposed algorithm is

bout 20 to 30 times faster as it can be seen also by comparing

he results for the few instances presented in Tables 3 and 5.

Note also that our algorithm has been implemented, to speed

p development, in the python scripting language, which is not

articularly optimized for speed. Therefore the shown time differ-

nce could potentially be improved by rewriting our algorithm in

ative code.

Note that in this work we always focused on finding the guar-

nteed optimal solution to the problem. In fact, also with the ad-

anced and lower bound approaches, the optimality of the solution

s preserved.

In order to present a more comprehensive view of the algo-

ithm, we also investigated how fast the algorithm converges to-

ards the optimal solution. Therefore, knowing the cost value of

he optimal solution, we plotted how far is the current solution

t each step of the algorithm with respect to the optimal one.

e compared two different priority functions, i.e., the costonly one
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Fig. 6. Analysis of the optimality of the intermediate solutions found using two dif-

ferent priority measures. The costonly measure terminates earlier with a small total

state tree size, but finds a feasible solution only at the very end of the execution.

The mixed measure makes the algorithm move faster towards a (suboptimal) feasi-

ble solution, but delays its completion.
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which has just been described, and the mixed one where the pri-

ority is defined as follows

πS =
1

3A

∑A
i=1 ni

c
(35)

where the state is S = (n1, n2, . . . , nA, u, c). The basic idea is that

the numerator in (35) provides an estimation of how close a state

is from a feasible solution. In fact, considering that ni can assume

increasing values, from 0 (the initial state) to 3 (the final state),

the higher the value of the sum, the more the visit is near to its

completion. The 1
3A

coefficient normalizes the numerator for the

feasible solution to 1, since ni ranges from 0 to 3. If the next leaf

to be branched is chosen according to (35), it is expected to reach a

(somewhat “good”) feasible solution faster than in the case we use

the costonly priority measure. That is because the priority value

defined in (35) takes in consideration both how much of the visit

has already been completed and how much it costs, thus it may

tend to favour a path that completes faster the visit of the nodes,

than just a path with the minimum cost.

Fig. 6 shows that, for the priority function in (35), with less

than 1/10 of the size of the fully grown state tree, the current so-

lution differs from the optimal one only for less than 3.5%. This is

an encouraging result to be explored in future work where more

efficient heuristics could be investigated.

7. Conclusions

In this work we proposed an algorithm to solve the navigation

problem of a UGV that aims to minimize the time needed to per-

form repeated acquisition, communication and action tasks on a

predetermined set of positions. Starting from the graph, we pro-

posed both a modeling approach based on integer linear program-

ming, to be tackled through commercial solvers, and a branch and

bound algorithm specifically designed for the problem. The algo-

rithm has been explained in details by means of detailed pseu-

docode and examples. Results showed that the proposed algo-

rithm is able to provide an improvement of 20 to 30 times over

commercial linear programming solvers when compared on many

instances that can be solved to optimality in reasonable compu-

tational time. Tests have been conducted on both synthetically

generated input data and data extracted from a real world case.

Moreover, faster variants of the algorithm have also been proposed

while solution optimality is maintained. While our proposals can

help to speed up computation compared to the ILP approach, the
omplexity still increases exponentially with the number of nodes

ue to the nature of the problem. Therefore, future work will be

evoted to investigate efficient heuristics able to find good solu-

ions with acceptable response times, maybe even able to run on

he robots themselves. As a first step in this direction, in this work

e also investigated how fast the proposed algorithm converges to

he optimal solution, providing an insight into how it is possible to

xtend this work by designing efficient heuristics.
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